login
A029864
G:=1/product((1-x^(3k-2))*(1-x^(3k-1))^2*(1-x^(3k))^3,k=1..infinity).
0
1, 1, 3, 6, 10, 18, 33, 50, 85, 135, 206, 319, 488, 714, 1068, 1559, 2241, 3226, 4598, 6448, 9076, 12622, 17415, 23982, 32797, 44496, 60311, 81171, 108698, 145178, 192947, 255189, 336804, 442434, 579093
OFFSET
0,3
COMMENTS
Number of partitions of n if there are two kinds of 2,5,8,11,... and three kinds of 3,6,9,12,... . E.g. a(4)=10 because we have 4, 3+1, 3'+1, 3"+1, 2+2, 2+2', 2'+2', 2+1+1, 2'+1+1, 1+1+1+1. - Emeric Deutsch, Mar 23 2005
Euler transform of period 3 sequence [1,2,3,1,2,3,...].
LINKS
CROSSREFS
Sequence in context: A182908 A076251 A261631 * A075111 A080014 A364403
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Mar 23 2005
STATUS
approved