login
A075111
a(n)=Sum((-1)^(i+Floor(n/2))T(2i+e),(i=0,..,Floor(n/2))), where T(n) are tribonacci numbers (A000073) and e=(1/2)(1-(-1)^n).
1
0, 1, 1, 1, 3, 6, 10, 18, 34, 63, 115, 211, 389, 716, 1316, 2420, 4452, 8189, 15061, 27701, 50951, 93714, 172366, 317030, 583110, 1072507, 1972647, 3628263, 6673417, 12274328, 22576008, 41523752, 76374088, 140473849, 258371689
OFFSET
0,5
COMMENTS
a(n) is the convolution of T(n) with the sequence (1,0,-1,0,1,0,-1,0,....) A056594.
FORMULA
a(n)=a(n-1)+2a(n-3)+a(n-4)+a(n-5), a(0)=0, a(1)=1, a(2)=1, a(3)=1, a(4)=3. G.f.: x/(1 - x - 2*x^3 - x^4 - x^5).
MATHEMATICA
CoefficientList[Series[x/(1 - x - 2*x^3 - x^4 - x^5), {x, 0, 40}], x]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Sep 01 2002
STATUS
approved