login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075109
Odd perfect powers (1 together with numbers m^k, m odd, k >= 2).
11
1, 9, 25, 27, 49, 81, 121, 125, 169, 225, 243, 289, 343, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1331, 1369, 1521, 1681, 1849, 2025, 2187, 2197, 2209, 2401, 2601, 2809, 3025, 3125, 3249, 3375, 3481, 3721, 3969, 4225, 4489, 4761, 4913, 5041, 5329, 5625
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=2} mu(k)*(1-zeta(k)*(2^k-1)/2^k) = 1.2890375574... - Amiram Eldar, Dec 19 2020
MAPLE
q:= n-> n=1 or n::odd and igcd(seq(i[2], i=ifactors(n)[2]))>1:
select(q, [$1..6000])[]; # Alois P. Heinz, May 04 2022
MATHEMATICA
Take[Union[Flatten[Table[a^b, {a, 1, 99, 2}, {b, 2, 15}]]], 50] (* Alonso del Arte, Nov 22 2011 *)
PROG
(Haskell)
a075109 n = a075109_list !! (n-1)
a075109_list = filter odd a001597_list -- Reinhard Zumkeller, Oct 04 2012
(Magma) [1] cat [n : n in [3..6000 by 2] | IsPower(n) ]; // Vincenzo Librandi, Mar 31 2014
(PARI) isok(m) = (m==1) || ((m%2) && ispower(m)); \\ Michel Marcus, May 04 2022
CROSSREFS
Intersection of A001597 and A005408.
Sequence in context: A275196 A325373 A062739 * A319165 A319152 A244623
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Oct 11 2002
EXTENSIONS
Definition clarified by N. J. A. Sloane, Dec 25 2021
STATUS
approved