login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364403
G.f. A(x) satisfies A(x) = 1 + x^4 * (A(x) / (1 - x))^3.
1
1, 0, 0, 0, 1, 3, 6, 10, 18, 39, 91, 204, 435, 919, 1992, 4434, 9947, 22215, 49455, 110480, 248505, 561930, 1273610, 2889666, 6566736, 14959083, 34163511, 78182700, 179201199, 411325125, 945512784, 2176710450, 5018195400, 11583688995, 26770164919
OFFSET
0,6
FORMULA
a(n) = Sum_{k=0..floor(n/4)} binomial(n-k-1,n-4*k) * binomial(3*k,k) / (2*k+1).
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(n-k-1, n-4*k)*binomial(3*k, k)/(2*k+1));
CROSSREFS
Partial sums give A364552.
Sequence in context: A029864 A075111 A080014 * A360892 A373803 A132274
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 15 2023
STATUS
approved