login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364402
a(n) = (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!).
0
1, 126, 41990, 15967980, 6421422150, 2663825039876, 1127155102890908, 483537022180231320, 209536624110664757830, 91505601042318156186900, 40205863224219682380130740, 17753412284992688334256754280, 7871411119532225034145860092700, 3502017467737750755575471520717480
OFFSET
0,2
COMMENTS
Member of Bober's second infinite family of integral factorial ratio sequences with a=5 and b=3 (see equation 11 at p. 16 in Bober).
LINKS
Jonathan W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, Journal of the London Mathematical Society, Vol. 79, No. 2 (2009), pp. 422-444; arXiv preprint, arXiv:0709.1977 [math.NT], 2007.
FORMULA
a(n) = 10*(10*n - 1)*(10*n - 3)*(10*n - 7)*(10*n - 9)/(3*n*(2*n - 1)*(6*n - 1)*(6*n - 5))*a(n-1).
a(n) ~ 2^(2*n-1) * 5^(5*n) / (sqrt(Pi*n) * 3^(3*n)). - Vaclav Kotesovec, Sep 21 2023
From Peter Bala, Sep 24 2023: (Start)
a(n) = A262732(2*n).
a(n) = [x^(2*n)] (1 + 4*x)^((10*n-1)/2) = 16^n * binomial((10*n-1)/2, 2*n).
O.g.f. A(x) = hypergeom([9/10, 7/10, 3/10, 1/10], [5/6, 1/2, 1/6], (12500/27)*x).
(End)
MAPLE
seq( (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!), n = 0..20); # Peter Bala, Sep 24 2023
PROG
(PARI) a(n) = (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!); \\ Michel Marcus, Sep 20 2023
CROSSREFS
Bisection of A262732. Cf. A182400, A211419.
Sequence in context: A289326 A295838 A165028 * A295816 A213405 A178189
KEYWORD
nonn
AUTHOR
Neven Sajko, Jul 22 2023
STATUS
approved