login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213405
G.f.: exp( Sum_{n>=1} binomial(10*n-1, 5*n) * x^n/n ).
4
1, 126, 54127, 32006130, 21932146139, 16361554045542, 12899454646949132, 10572670991255846304, 8918668730118452570305, 7692248193351420093481862, 6752486830867475508568486796, 6013184272780892846457637247036, 5418931042748331247016688462113387
OFFSET
0,2
LINKS
Feihu Liu and Guoce Xin, Simple Generating Functions for Certain Young Tableaux with Periodic Walls, arXiv:2401.14627 [math.CO], 2024.
FORMULA
G.f. A(x) satisfies: A(x^5) = C(x)*C(u*x)*C(u^2*x)*C(u^3*x)*C(u^4*x) where u = exp(2*Pi*I/5) and C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).
a(n) ~ (1 + sqrt((5+sqrt(5))/2) - sqrt((5+sqrt(5))/2 + sqrt(2*(5+sqrt(5))))) * (1 + sqrt((5-sqrt(5))/2) - sqrt((5-sqrt(5))/2 + sqrt(2*(5-sqrt(5))))) * 2^(10*n+4) / (sqrt(5*Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 05 2014
EXAMPLE
G.f.: A(x) = 1 + 126*x + 54127*x^2 + 32006130*x^3 + 21932146139*x^4 +...
such that A(x^5) = C(x)*C(u*x)*C(u^2*x)*C(u^3*x)*C(u^4*x) where u = exp(2*Pi*I/5) and
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, binomial(10*m-1, 5*m)*x^m/m)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 10 2012
STATUS
approved