Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 06 2024 12:21:58
%S 1,126,54127,32006130,21932146139,16361554045542,12899454646949132,
%T 10572670991255846304,8918668730118452570305,
%U 7692248193351420093481862,6752486830867475508568486796,6013184272780892846457637247036,5418931042748331247016688462113387
%N G.f.: exp( Sum_{n>=1} binomial(10*n-1, 5*n) * x^n/n ).
%H Vaclav Kotesovec, <a href="/A213405/b213405.txt">Table of n, a(n) for n = 0..330</a>
%H Feihu Liu and Guoce Xin, <a href="https://arxiv.org/abs/2401.14627">Simple Generating Functions for Certain Young Tableaux with Periodic Walls</a>, arXiv:2401.14627 [math.CO], 2024.
%F G.f. A(x) satisfies: A(x^5) = C(x)*C(u*x)*C(u^2*x)*C(u^3*x)*C(u^4*x) where u = exp(2*Pi*I/5) and C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).
%F a(n) ~ (1 + sqrt((5+sqrt(5))/2) - sqrt((5+sqrt(5))/2 + sqrt(2*(5+sqrt(5))))) * (1 + sqrt((5-sqrt(5))/2) - sqrt((5-sqrt(5))/2 + sqrt(2*(5-sqrt(5))))) * 2^(10*n+4) / (sqrt(5*Pi)*n^(3/2)). - _Vaclav Kotesovec_, Jul 05 2014
%e G.f.: A(x) = 1 + 126*x + 54127*x^2 + 32006130*x^3 + 21932146139*x^4 +...
%e such that A(x^5) = C(x)*C(u*x)*C(u^2*x)*C(u^3*x)*C(u^4*x) where u = exp(2*Pi*I/5) and
%e C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 +...
%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n,binomial(10*m-1,5*m)*x^m/m)+x*O(x^n)),n)}
%o for(n=0,20,print1(a(n),", "))
%Y Cf. A000108, A079489, A213403, A213404, A213406.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jun 10 2012