login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365026
a(n) = (5*n)!*(9*n/2)!*(n/2)! / ((2*n)!^2 * (5*n/2)!^2 * n!).
3
1, 126, 79380, 65523780, 60634147860, 59774707082376, 61346313465418800, 64736852770959042240, 69724035322703253191700, 76277370761329867481375100, 84482032811073922526904281880, 94508142285721995026811874069200, 106599928449546340546215262030974000
OFFSET
0,2
COMMENTS
Fractional factorials are defined in terms of the gamma function; for example, (9*n/2)! = Gamma(1 + 9*n/2).
Row 2 of A365025.
LINKS
FORMULA
a(n) = Sum_{j = 0..2*n} binomial(5*n, 2*n-j)^2 * binomial(n+j-1, j).
P-recursive: (5*n-2)*(5*n-4)*(5*n-6)*(5*n-8)*(2*n)^2*(2*n-1)^2*(2*n-2)^2*(2*n-3)^2*a(n)= 9*(9*n-2)*(9*n-4)*(9*n-6)*(9*n-8)*(9*n-10)*(9*n-12)*(9*n-14)*(9*n-16)*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)*a(n-2) with a(0) = 1 and a(1) = 126.
a(n) ~ c^n * 3*sqrt(5)/(20*Pi*n), where c = (3^9)/(2^4).
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all integers n and r.
a(n) = [x^n] G(x)^(9*n), where the power series G(x) = 1 + 14*x + 2744*x^2 + 1130724*x^3 + 615596785*x^4 + 388901411712*x^5 + 269588153179744*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^9, where the power series F(x) = 1 + 14*x + 4508*x^2 + 2489004*x^3 + 1728415009*x^4 + 1362984972918*x^5 + 1165343050808188*x^6 + ... appears to have integer coefficients.
MAPLE
seq( simplify((5*n)!*(9*n/2)!*(n/2)! / ((2*n)!^2 * (5*n/2)!^2 * n!)), n = 0..15);
MATHEMATICA
A365026[n_]:=(5n)!(9n/2)!(n/2)!/((2n)!^2(5n/2)!^2n!); Array[A365026, 15, 0] (* Paolo Xausa, Oct 05 2023 *)
PROG
(Python)
from math import factorial
from sympy import factorial2
def A365026(n): return int(factorial(5*n)*factorial2(9*n)*factorial2(n)//((factorial2(5*n)*factorial(n<<1))**2*factorial(n))) # Chai Wah Wu, Aug 24 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 17 2023
STATUS
approved