Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 05 2023 08:37:18
%S 1,126,79380,65523780,60634147860,59774707082376,61346313465418800,
%T 64736852770959042240,69724035322703253191700,
%U 76277370761329867481375100,84482032811073922526904281880,94508142285721995026811874069200,106599928449546340546215262030974000
%N a(n) = (5*n)!*(9*n/2)!*(n/2)! / ((2*n)!^2 * (5*n/2)!^2 * n!).
%C Fractional factorials are defined in terms of the gamma function; for example, (9*n/2)! = Gamma(1 + 9*n/2).
%C Row 2 of A365025.
%H Paolo Xausa, <a href="/A365026/b365026.txt">Table of n, a(n) for n = 0..300</a>
%F a(n) = Sum_{j = 0..2*n} binomial(5*n, 2*n-j)^2 * binomial(n+j-1, j).
%F P-recursive: (5*n-2)*(5*n-4)*(5*n-6)*(5*n-8)*(2*n)^2*(2*n-1)^2*(2*n-2)^2*(2*n-3)^2*a(n)= 9*(9*n-2)*(9*n-4)*(9*n-6)*(9*n-8)*(9*n-10)*(9*n-12)*(9*n-14)*(9*n-16)*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)*a(n-2) with a(0) = 1 and a(1) = 126.
%F a(n) ~ c^n * 3*sqrt(5)/(20*Pi*n), where c = (3^9)/(2^4).
%F Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all integers n and r.
%F a(n) = [x^n] G(x)^(9*n), where the power series G(x) = 1 + 14*x + 2744*x^2 + 1130724*x^3 + 615596785*x^4 + 388901411712*x^5 + 269588153179744*x^6 + ... appears to have integer coefficients.
%F exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^9, where the power series F(x) = 1 + 14*x + 4508*x^2 + 2489004*x^3 + 1728415009*x^4 + 1362984972918*x^5 + 1165343050808188*x^6 + ... appears to have integer coefficients.
%p seq( simplify((5*n)!*(9*n/2)!*(n/2)! / ((2*n)!^2 * (5*n/2)!^2 * n!)), n = 0..15);
%t A365026[n_]:=(5n)!(9n/2)!(n/2)!/((2n)!^2(5n/2)!^2n!);Array[A365026,15,0] (* _Paolo Xausa_, Oct 05 2023 *)
%o (Python)
%o from math import factorial
%o from sympy import factorial2
%o def A365026(n): return int(factorial(5*n)*factorial2(9*n)*factorial2(n)//((factorial2(5*n)*factorial(n<<1))**2*factorial(n))) # _Chai Wah Wu_, Aug 24 2023
%Y Cf. A275652, A365025, A365027.
%K nonn,easy
%O 0,2
%A _Peter Bala_, Aug 17 2023