login
A365023
The greater of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.
3
2821, 63973, 530881, 658801, 670033, 852841, 1050985, 2113921, 4909177, 6049681, 6054985, 8355841, 8719921, 9494101, 9585541, 9613297, 11205601, 11972017, 12262321, 15888313, 17316001, 26932081, 35703361, 36765901, 38637361, 41471521, 43331401, 43620409, 45890209
OFFSET
1,1
LINKS
Mauro Fiorentini, Carmichael gemelli (numeri di) (in Italian).
Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867 [math.NT], 2013.
MATHEMATICA
npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *)
seq[nmax_] := Module[{carmichaels = Select[Range[1, nmax, 2], CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &], s = {}, c1, c2}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s, carmichaels[[k+1]]]], {k, 1, Length[carmichaels] - 1}]; s]; seq[10^6]
CROSSREFS
Subsequence of A002997.
Cf. A000961, A087442, A225498, A365022 (lesser counterparts), A365024.
Sequence in context: A248985 A236794 A182151 * A182085 A271580 A237063
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 17 2023
STATUS
approved