login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A365021
a(n) is the largest prime of the form P+1 where P divides prime(n)# and p# denotes the product of all primes <= p.
1
3, 7, 31, 211, 2311, 6007, 102103, 3233231, 17160991, 2156564411, 200560490131, 1060105447831, 27659114866111, 568815710072611, 87841397512641631, 4655594068170006391, 147904642319554818391, 6899316550553351234311, 374205788146679383613291, 24258296962030389607278931
OFFSET
1,1
FORMULA
Conjecture: a(n) > (1/2) * prime(n-1)#.
PROG
(PARI) a(n) = my(P=vecprod(primes(n)), p=1); while(!ispseudoprime(floor((P/p)+1)) || gcd(P, p)<>p, p=p+2); (P/p)+1;
CROSSREFS
Sequence in context: A343087 A051342 A002585 * A103785 A289127 A289125
KEYWORD
nonn
AUTHOR
Alain Rocchelli, Aug 16 2023
STATUS
approved