OFFSET
1,1
COMMENTS
Based on Euclid's proof that there are infinitely many primes.
The products of the first primes are called primorial numbers. - Franklin T. Adams-Watters, Jun 12 2014
REFERENCES
M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors).
M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Borning, Some results for k!+-1 and 2.3.5...p+-1, Math. Comp., 26 (1972), 567-570.
M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy]
S. Kravitz and D. E. Penney, An extension of Trigg's table, Math. Mag., 48 (1975), 92-96.
S. Kravitz and D. E. Penney, An extension of Trigg's table, Math. Mag., 48 (1975), 92-96. [Annotated scanned copy; also letter from N. J. A. Sloane to John Selfridge]
R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018. - From N. J. A. Sloane, Jun 13 2012
Hisanori Mishima, Factorizations of many number sequences
Hisanori Mishima, Factorizations of many number sequences
John Selfridge, Marvin Wunderlich, Robert Morris, N. J. A. Sloane, Correspondence, 1975
Eric Weisstein's World of Mathematics, Euclid Number.
R. G. Wilson v, Explicit factorizations
FORMULA
MATHEMATICA
FactorInteger[#][[-1, 1]]&/@Rest[FoldList[Times, 1, Prime[Range[30]]]+1] (* Harvey P. Dale, Apr 10 2012 *)
PROG
(PARI) a(n)=my(f=factor(prod(i=1, n, prime(i))+1)[, 1]); f[#f] \\ Charles R Greathouse IV, Feb 07 2017
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Labos Elemer, May 02 2000
More terms from Robert G. Wilson v, Mar 24 2001
Terms up to a(81) in b-file added by Sean A. Irvine, Apr 19 2014
Terms a(82)-a(87) in b-file added by Amiram Eldar, Feb 13 2020
Terms a(88)-a(98) in b-file added by Max Alekseyev, Aug 26 2021
STATUS
approved