OFFSET
1,2
COMMENTS
The products of the first primes are called primorial numbers. - Franklin T. Adams-Watters, Jun 12 2014
REFERENCES
M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors).
M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Sean A. Irvine and Amiram Eldar, Table of n, a(n) for n = 1..99 (terms 1..91 from Sean A. Irvine)
A. Borning, Some results for k!+-1 and 2.3.5...p+-1, Math. Comp., 26 (1972), 567-570.
M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy]
S. Kravitz and D. E. Penney, An extension of Trigg's table, Math. Mag., 48 (1975), 92-96.
S. Kravitz and D. E. Penney, An extension of Trigg's table, Math. Mag., 48 (1975), 92-96. [Annotated scanned copy; also letter from N. J. A. Sloane to John Selfridge]
Hisanori Mishima, Factorizations of many number sequences
John Selfridge, Marvin Wunderlich, Robert Morris, N. J. A. Sloane, Correspondence, 1975
R. G. Wilson v, Explicit factorizations.
FORMULA
MATHEMATICA
Prepend[Table[ Max[Transpose[FactorInteger[(Times @@ Prime[Range[i]]) - 1]][[1]]], {i, 2, 20}], 1]
FactorInteger[#][[-1, 1]]&/@Rest[FoldList[Times, 1, Prime[Range[20]]]-1] (* Harvey P. Dale, Feb 27 2013 *)
PROG
(PARI) a(n)=if(n>1, my(f=factor(prod(i=1, f, prime(i)))[, 1]); f[#f], 1) \\ Charles R Greathouse IV, Feb 08 2017
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from J. L. Selfridge
Further terms from Labos Elemer, Oct 25 2000
STATUS
approved