login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002584
Largest prime factor of product of first n primes - 1, or 1 if no such prime exists.
(Formerly M3952 N1628)
8
1, 5, 29, 19, 2309, 30029, 8369, 929, 46027, 81894851, 876817, 38669, 304250263527209, 92608862041, 59799107, 1143707681, 69664915493, 1146665184811, 17975352936245519, 2140320249725509
OFFSET
1,2
COMMENTS
The products of the first primes are called primorial numbers. - Franklin T. Adams-Watters, Jun 12 2014
REFERENCES
M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors).
M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Sean A. Irvine and Amiram Eldar, Table of n, a(n) for n = 1..99 (terms 1..91 from Sean A. Irvine)
A. Borning, Some results for k!+-1 and 2.3.5...p+-1, Math. Comp., 26 (1972), 567-570.
M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy]
S. Kravitz and D. E. Penney, An extension of Trigg's table, Math. Mag., 48 (1975), 92-96.
S. Kravitz and D. E. Penney, An extension of Trigg's table, Math. Mag., 48 (1975), 92-96. [Annotated scanned copy; also letter from N. J. A. Sloane to John Selfridge]
John Selfridge, Marvin Wunderlich, Robert Morris, N. J. A. Sloane, Correspondence, 1975
R. G. Wilson v, Explicit factorizations.
FORMULA
a(n) = A006530(A057588(n)). - Amiram Eldar, Feb 13 2020
MATHEMATICA
Prepend[Table[ Max[Transpose[FactorInteger[(Times @@ Prime[Range[i]]) - 1]][[1]]], {i, 2, 20}], 1]
FactorInteger[#][[-1, 1]]&/@Rest[FoldList[Times, 1, Prime[Range[20]]]-1] (* Harvey P. Dale, Feb 27 2013 *)
PROG
(PARI) a(n)=if(n>1, my(f=factor(prod(i=1, f, prime(i)))[, 1]); f[#f], 1) \\ Charles R Greathouse IV, Feb 08 2017
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from J. L. Selfridge
Further terms from Labos Elemer, Oct 25 2000
STATUS
approved