login
A057206
Primes of the form 6k+5 generated recursively: a(1)=5; a(n) = min{p, prime; p mod 6 = 5; p | 6Q-1}, where Q is the product of all previous terms in the sequence.
2
5, 29, 11, 1367, 13082189, 89, 59, 29819952677, 91736008068017, 17, 887050405736870123700827, 688273423680369013308306870159348033807942418302818522537, 74367405177105011, 12731422703, 1812053
OFFSET
1,1
COMMENTS
There are infinitely many primes of the form 6k + 5, and this sequence figures in the classic proof of that fact. - Alonso del Arte, Mar 02 2017
REFERENCES
Dirichlet, P. G. L. (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
LINKS
EXAMPLE
a(3) = 11 is the smallest prime divisor of the form 6k + 5 of 6 * (5 * 29) - 1 = 6Q - 1 = 11 * 79 = 869.
MATHEMATICA
primes5mod6 = {5}; q = 1; For[n = 2, n <= 10, n++, q = q * Last[ primes5mod6]; AppendTo[primes5mod6, Min[Select[FactorInteger[6 * q - 1][[All, 1]], Mod[#, 6] == 5 &]]]; ]; primes5mod6 (* Robert Price, Jul 18 2015 *)
PROG
(PARI) main(size)={my(v=vector(size), i, q=1, t); for(i=1, size, t=1; while(!(prime(t)%6==5&&(6*q-1)%prime(t)==0), t++); v[i]=prime(t); q*=v[i]); v; } /* Anders Hellström, Jul 18 2015 */
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 09 2000
EXTENSIONS
a(13)-a(17) from Robert Price, Jul 18 2015
STATUS
approved