The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057204 Primes congruent to 1 mod 6 generated recursively. Initial prime is 7. The next term is p(n) = Min {p is prime; p divides 4Q^2+3; Mod[p,6]=1}, where Q is the product of previous entries of the sequence. 28
 7, 199, 7761799, 487, 67, 103, 3562539697, 7251847, 13, 127, 5115369871402405003, 31, 697830431171707, 151, 3061, 229, 193, 5393552285540920774057256555028583857599359699, 709, 397, 37, 61, 46168741, 3127279, 181, 122268541 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 4Q^2+3 always has a prime divisor congruent to 1 modulo 6. If we start with the empty product Q=1 then it is not necessary to specify the initial prime. - Jens Kruse Andersen, Jun 30 2014 REFERENCES Dirichlet,P.G.L (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13. LINKS Sean A. Irvine, Table of n, a(n) for n = 1..48 EXAMPLE a(4)=487 is the smallest prime divisor of 4QQ+3=10812186007, congruent to 1 mod 6, where Q=7.199.7761799. MATHEMATICA a={7}; q=1; For[n=2, n<=7, n++,     q=q*Last[a];     AppendTo[a, Min[Select[FactorInteger[4*q^2+3][[All, 1]], Mod[#, 6]==1 &]]];     ]; a (* Robert Price, Jul 16 2015 *) PROG (PARI) Q=1; for(n=1, 11, f=factor(4*Q^2+3); for(i=1, #f~, p=f[i, 1]; if(p%6==1, break)); print1(p", "); Q*=p) \\ Jens Kruse Andersen, Jun 30 2014 CROSSREFS Cf. A000945, A000946, A005265, A005266, A051308-A051335, A002476, A057204-A057208. Sequence in context: A300616 A178319 A202943 * A124988 A220934 A221288 Adjacent sequences:  A057201 A057202 A057203 * A057205 A057206 A057207 KEYWORD nonn AUTHOR Labos Elemer, Oct 09 2000 EXTENSIONS More terms from Nick Hobson, Nov 14 2006 More terms from Sean A. Irvine, Oct 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 19:21 EDT 2020. Contains 333127 sequences. (Running on oeis4.)