login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202943
G.f.: [ Sum_{n>=0} (n+1)*(n+2)/2 * 2^(n*(n-1)) * x^n ]^(1/3).
3
1, 1, 7, 199, 20026, 7296946, 10006653574, 52756427071846, 1080758244198360481, 86574556540356639703921, 27234507698931717202501389871, 33749875110161915818408975272861391, 165150307912136693948216143106251788630208
OFFSET
0,3
COMMENTS
Compare g.f. to: [Sum_{n>=0} (n+1)*(n+2)/2 * x^n ]^(1/3) = 1/(1-x).
Conjecture: the characteristic function of a(n) (mod 2) equals (1+x)*(1+x^2)*(1+x^8) * Sum_{n>0} x^(32*A000695(n)), where A000695 is the sums of distinct powers of 4.
LINKS
FORMULA
a(n) == 1 (mod 3).
EXAMPLE
G.f.: A(x) = 1 + x + 7*x^2 + 199*x^3 + 20026*x^4 + 7296946*x^5 +...
where
A(x)^3 = 1 + 3*x + 6*2^2*x^2 + 10*2^6*x^3 + 15*2^12*x^4 + 21*2^20*x^5 +...
more explicitly,
A(x)^3 = 1 + 3*x + 24*x^2 + 640*x^3 + 61440*x^4 + 22020096*x^5 +...+ A202944(n)*x^n +...
The residues modulo 2 of this sequence begin:
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,...];
which forms the characteristic function:
(1+x)*(1+x^2)*(1+x^8)*(1 + x^32 + x^128 + x^160 + x^512 + x^544 + x^640 + x^672 +...+ x^(32*A000695(n)) +...).
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (m+1)*(m+2)/2*2^(m*(m-1))*x^m+x*O(x^n))^(1/3), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 26 2011
STATUS
approved