Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3952 N1628 #55 Feb 13 2020 11:57:10
%S 1,5,29,19,2309,30029,8369,929,46027,81894851,876817,38669,
%T 304250263527209,92608862041,59799107,1143707681,69664915493,
%U 1146665184811,17975352936245519,2140320249725509
%N Largest prime factor of product of first n primes - 1, or 1 if no such prime exists.
%C The products of the first primes are called primorial numbers. - _Franklin T. Adams-Watters_, Jun 12 2014
%D M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors).
%D M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 2.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Sean A. Irvine and Amiram Eldar, <a href="/A002584/b002584.txt">Table of n, a(n) for n = 1..99</a> (terms 1..91 from Sean A. Irvine)
%H A. Borning, <a href="http://dx.doi.org/10.1090/S0025-5718-1972-0308018-5 ">Some results for k!+-1 and 2.3.5...p+-1</a>, Math. Comp., 26 (1972), 567-570.
%H M. Kraitchik, <a href="/A002582/a002582.pdf">On the divisibility of factorials</a>, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy]
%H S. Kravitz and D. E. Penney, <a href="http://www.jstor.org/stable/2689826">An extension of Trigg's table</a>, Math. Mag., 48 (1975), 92-96.
%H S. Kravitz and D. E. Penney, <a href="/A002584/a002584.pdf">An extension of Trigg's table</a>, Math. Mag., 48 (1975), 92-96. [Annotated scanned copy; also letter from N. J. A. Sloane to John Selfridge]
%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha103.htm">Factorizations of many number sequences</a>
%H John Selfridge, Marvin Wunderlich, Robert Morris, N. J. A. Sloane, <a href="/A002584/a002584_1.pdf">Correspondence, 1975</a>
%H R. G. Wilson v, <a href="/A038507/a038507.txt">Explicit factorizations</a>.
%F a(n) = A006530(A057588(n)). - _Amiram Eldar_, Feb 13 2020
%t Prepend[Table[ Max[Transpose[FactorInteger[(Times @@ Prime[Range[i]]) - 1]][[1]]], {i, 2, 20}], 1]
%t FactorInteger[#][[-1,1]]&/@Rest[FoldList[Times,1,Prime[Range[20]]]-1] (* _Harvey P. Dale_, Feb 27 2013 *)
%o (PARI) a(n)=if(n>1, my(f=factor(prod(i=1,f,prime(i)))[,1]); f[#f], 1) \\ _Charles R Greathouse IV_, Feb 08 2017
%Y Cf. A002110, A002585, A006530, A057588.
%K nonn,nice
%O 1,2
%A _N. J. A. Sloane_
%E More terms from J. L. Selfridge
%E Further terms from _Labos Elemer_, Oct 25 2000