login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103785
Primes of the form A019565(2^n-1-k)+A019565(k) with minimum k.
4
3, 7, 31, 211, 2311, 15017, 85091, 1616621, 22309297, 3234846617, 200560490131, 3710369067407, 20283350901829, 872184088778017, 307444891294245707, 775932344695001107, 961380175077106319537, 19548063559901161830551
OFFSET
1,1
COMMENTS
This sequence can also be defined as: The Primes of the form primorial P(n)/A019565(k)+A019565(k) with minimum k. Conjecture: sequence is defined for any n>=1.
EXAMPLE
for n=1, A019565(2^1-1-0)+A019565(0)=2+1=3 is prime, so a(1)=3;
for n=6, A019565(2^6-1-1)+A019565(1)=15015+2=15017 is prime, so a(6)=15017;
MATHEMATICA
nmax = 2^2048; npd = 1; n = 1; npd = npd*Prime[n]; While[npd < nmax, tn = 0; tt = 1; cp = npd/tt + tt; While[(IntegerQ[cp]) && (! (PrimeQ[cp])), tn = tn + 1; tt = 1; k1 = tn; o = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; cp = npd/tt + tt]; Print[cp]; n = n + 1; npd = npd*Prime[n]]
CROSSREFS
Sequence in context: A051342 A002585 A365021 * A289127 A289125 A083772
KEYWORD
base,nonn
AUTHOR
Lei Zhou, Feb 15 2005
STATUS
approved