OFFSET
1,2
COMMENTS
Erdős et al. proved that phi(n)/phi(phi(n)) is unbounded, thus this sequence is infinite.
A018239(k) = A002110(A014545(k)) + 1 is a term for k > 1. Are there terms m with omega(m) > 2? Is omega(phi(a(n + 1))) >= omega(phi(a(n)))? - David A. Corneth, Jun 28 2017
LINKS
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
MATHEMATICA
a = {}; k=1; rmax = 0; While[Length[a]<10, s = EulerPhi[ k]; s2 = EulerPhi[ s]; r = s/s2; If[r > rmax, AppendTo[a, k]; rmax = r]; k++]; a
DeleteDuplicates[Table[{n, EulerPhi[n]/EulerPhi[EulerPhi[n]]}, {n, 11*10^5}], GreaterEqual[ #1[[2]], #2[[2]]]&][[;; , 1]] (* The program generates the first ten terms of the sequence. *) (* Harvey P. Dale, Aug 17 2024 *)
PROG
(PARI) r=0; forfactored(n=1, 10^10, t=eulerphi(n); t/=eulerphi(t); if(t>r, r=t; print1(n[1]", "))) \\ Charles R Greathouse IV, Jun 25 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Jun 25 2017
EXTENSIONS
a(15)-a(17) from Giovanni Resta, Jul 01 2017
STATUS
approved