login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289122 a(n) is number of odd integers divisible by 11 in the interval ]2*(n-1)^2, 2*n^2[. 5
0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

This sequence has the form (0+2k,0+2k,0+2k,1+2k,0+2k,1+2k,1+2k,1+2k,2+2k, 1+2k,2+2k) for k>=0.

LINKS

Table of n, a(n) for n=0..80.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,1,-1).

FORMULA

a(n + 11*k) = a(n) + 2*k. - David A. Corneth, Jun 25 2017

G.f.: (x^10-x^9+x^8+x^5-x^4+x^3)/(x^12-x^11-x+1). - Alois P. Heinz, Jun 26 2017

MATHEMATICA

Table[Count[Mod[Table[2((n-1)^2 +k) -1, {k, 1, 2n-1}], 11], 0], {n, 0, 50}]

LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 2}, 90] (* Harvey P. Dale, Aug 24 2017 *)

PROG

(PARI) a(n) = sum(k=2*(n-1)^2, 2*n^2, ((k % 2) && ((k % 11) == 0))); \\ Michel Marcus, Jun 26 2017

CROSSREFS

Cf. A289120, A289133, A288156, A004523, A289139.

Sequence in context: A338336 A298783 A053280 * A025832 A320385 A112222

Adjacent sequences:  A289119 A289120 A289121 * A289123 A289124 A289125

KEYWORD

nonn,easy

AUTHOR

Ralf Steiner, Jun 25 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 05:09 EDT 2021. Contains 343688 sequences. (Running on oeis4.)