OFFSET
1,11
COMMENTS
Three positive numbers a, b and c (without loss of generality c<=a, c<=b) define the faces of a disphenoid which can be used for a kaleidocycle if and only if -8*(a^2-b^2)^2*(a^2+b^2)-5*c^6+11*(a^2-b^2)^2*c^2+2*(a^2+b^2)*c^4>=0.
REFERENCES
Doris Schattschneider and Wallace Walker, M.C. Escher Kaleidocycles, 1977. ISBN 0-906212-28-6
LINKS
Herbert Kociemba, Kaleidocycles with 6 Disphenoids
Wikipedia, Kaleidocycle
MATHEMATICA
value[a_, b_, c_]:=-8 (a^2-b^2)^2 (a^2+b^2)-5 c^6+11 (a^2-b^2)^2 c^2+2 (a^2+b^2) c^4
a[n_]:=Module[{a, b, c, t=0}, Do[If[a=n-b-c; a>=b&&value[a, b, c]>=0, t++], {c, Quotient[n, 3]}, {b, c, n-c}]; t];
Array[a, 80]
CROSSREFS
KEYWORD
nonn
AUTHOR
Herbert Kociemba, Oct 22 2020
STATUS
approved