Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 15 2020 13:12:02
%S 0,0,0,0,1,0,1,1,1,1,2,1,2,2,2,2,3,2,3,3,3,3,4,3,4,4,4,4,5,4,6,5,6,6,
%T 7,6,7,7,7,8,8,8,9,9,9,10,10,9,11,10,11,11,12,11,12,12,14,13,14,14,14,
%U 15,15,16,16,17,17,18,18,18,19,18,20,19,21,20,22,21,23,22
%N Number of integer-sided disphenoids (isosceles tetrahedra) with triangle face perimeter n which can be used to build a kaleidocycle by connecting 6 congruent pieces into a cycle.
%C Three positive numbers a, b and c (without loss of generality c<=a, c<=b) define the faces of a disphenoid which can be used for a kaleidocycle if and only if -8*(a^2-b^2)^2*(a^2+b^2)-5*c^6+11*(a^2-b^2)^2*c^2+2*(a^2+b^2)*c^4>=0.
%D Doris Schattschneider and Wallace Walker, M.C. Escher Kaleidocycles, 1977. ISBN 0-906212-28-6
%H Herbert Kociemba, <a href="http://kociemba.org/themen/kaleidocycles/intro.html">Kaleidocycles with 6 Disphenoids</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Kaleidocycle">Kaleidocycle</a>
%t value[a_,b_,c_]:=-8 (a^2-b^2)^2 (a^2+b^2)-5 c^6+11 (a^2-b^2)^2 c^2+2 (a^2+b^2) c^4
%t a[n_]:=Module[{a,b,c,t=0},Do[If[a=n-b-c;a>=b&&value[a,b,c]>=0,t++],{c,Quotient[n,3]},{b,c,n-c}];t];
%t Array[a,80]
%Y Cf. A338334, A338335.
%K nonn
%O 1,11
%A _Herbert Kociemba_, Oct 22 2020