OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..410
Feihu Liu and Guoce Xin, Simple Generating Functions for Certain Young Tableaux with Periodic Walls, arXiv:2401.14627 [math.CO], 2024.
FORMULA
G.f. A(x) satisfies: A(x^4) = C(x)*C(-x)*C(I*x)*C(-I*x) where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).
a(n) ~ (1-sqrt(2*(sqrt(2)-1))) * 4^(4*n+1) / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Jul 05 2014
EXAMPLE
G.f.: A(x) = 1 + 35*x + 3830*x^2 + 570451*x^3 + 98118690*x^4 +...
such that A(x^4) = C(x)*C(-x)*C(I*x)*C(-I*x) where I^2 = -1 and
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 +...
Also, A(x^2) = G(x)*G(-x) where G(x) is the g.f. of A079489:
G(x) = 1 + 3*x + 22*x^2 + 211*x^3 + 2306*x^4 + 27230*x^5 + 338444*x^6 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, binomial(8*m-1, 4*m)*x^m/m)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 10 2012
STATUS
approved