login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074678 a(n) = Sum_{j=0..floor(n/2)} (-1)^(j+floor(n/2))*S(2j+q), where S(n) are generalized tribonacci numbers (A001644) and q = (1-(-1)^n)/2. 3
3, 1, 0, 6, 11, 15, 28, 56, 103, 185, 340, 630, 1159, 2127, 3912, 7200, 13243, 24353, 44792, 82390, 151539, 278719, 512644, 942904, 1734271, 3189817, 5866988, 10791078, 19847887, 36505951, 67144912, 123498752, 227149619, 417793281 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) is the convolution of S(n) with the sequence (1,0,-1,0,1,0,-1,0,....) A056594.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,2,1,1).

FORMULA

a(n) = Sum_{j=0..floor(n/2)} (-1)^(j+floor(n/2))*S(2j+q), where S(n) are generalized tribonacci numbers (A001644) and q = (1-(-1)^n)/2.

a(n) = a(n-1) + 2*a(n-3) + a(n-4) + a(n-5), a(0)=3, a(1)=1, a(2)=0, a(3)=6, a(4)=11.

G.f.: (3 - 2*x - x^2)/(1 - x - 2*x^3 - x^4 - x^5).

MATHEMATICA

CoefficientList[Series[(3-2*x-x^2)/(1-x-2*x^3-x^4-x^5), {x, 0, 40}], x]

LinearRecurrence[{1, 0, 2, 1, 1}, {3, 1, 0, 6, 11}, 40] (* G. C. Greubel, Apr 02 2019 *)

PROG

(PARI) my(x='x+O('x^40)); Vec((3-2*x-x^2)/(1-x-2*x^3-x^4-x^5)) \\ G. C. Greubel, Apr 02 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3-2*x-x^2)/(1-x-2*x^3-x^4-x^5) )); // G. C. Greubel, Apr 02 2019

(Sage) ((3-2*x-x^2)/(1-x-2*x^3-x^4-x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 02 2019

(GAP) a:=[3, 1, 0, 6, 11];; for n in [6..40] do a[n]:=a[n-1]+2*a[n-3]+a[n-4] +a[n-5]; od; a; # G. C. Greubel, Apr 02 2019

CROSSREFS

Cf. A001644, A056594.

Sequence in context: A248826 A058152 A058140 * A201586 A130888 A010601

Adjacent sequences:  A074675 A074676 A074677 * A074679 A074680 A074681

KEYWORD

easy,nonn

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Aug 30 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 18:03 EST 2019. Contains 329809 sequences. (Running on oeis4.)