

A074676


Differences between consecutive threedigit distinctdigit primes.


6



4, 2, 18, 10, 2, 10, 8, 6, 4, 6, 6, 14, 4, 42, 2, 10, 6, 6, 6, 2, 10, 2, 10, 14, 10, 30, 2, 10, 8, 12, 10, 8, 4, 8, 10, 2, 10, 8, 18, 4, 2, 4, 12, 8, 4, 12, 6, 12, 2, 18, 6, 16, 6, 2, 16, 6, 8, 6, 6, 4, 2, 12, 10, 2, 4, 6, 6, 14, 10, 8, 10, 8, 10, 20, 4, 8, 10, 8, 40, 12, 2, 4, 2, 10, 14, 4, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are exactly 97 threedigit primes with all distinct digits, so the sequence is finite.


LINKS

Jinyuan Wang, Table of n, a(n) for n = 1..96


EXAMPLE

a(1)=4 because the first and the second threedigit primes with all distinct digits are 103, 107 and difference between them is 4.


MATHEMATICA

se=Select[Range[103, 983, 2], Length[Union[IntegerDigits[ # ]]]==3&&PrimeQ[ # ]&]; Flatten[Table[{se[[i+1]]se[[i]]}, {i, 96}]]


CROSSREFS

The first differences of the A074675. For 4digit distinctdigit primes, see A074673, A074674. For 5digit distinctdigit primes, see A074671, A074672. For 6digit distinctdigit primes, see A074669, A074670. For 7digit distinctdigit primes, see A074667, A074668. For 8digit distinctdigit primes, see A074665, A074666.
Sequence in context: A255566 A302461 A303243 * A257505 A152883 A285793
Adjacent sequences: A074673 A074674 A074675 * A074677 A074678 A074679


KEYWORD

nonn,base,fini,full


AUTHOR

Zak Seidov, Aug 30 2002


STATUS

approved



