login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010693
Periodic sequence: Repeat 2,3.
27
2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
OFFSET
0,1
COMMENTS
a(n) = smallest prime divisor of n!! for n >= 2. For biggest prime divisor of n!! see A139421. - Artur Jasinski, Apr 21 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=-charpoly(A,-2). - Milan Janjic, Jan 27 2010
Simple continued fraction of 1+sqrt(5/3) = A176020. - R. J. Mathar, Mar 08 2012
p(n) = a(n-1) is the Abelian complexity function of the Thue-Morse word A010060. - Nathan Fox, Mar 12 2013
LINKS
G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, J. London Math. Soc. 83(1) (2011) 79-95.
G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, arXiv:0911.2914 [math.CO], 2009.
FORMULA
a(n) = 5/2 - ((-1)^n)/2.
a(n) = 2 + (n mod 2) = A007395(n) + A000035(n). - Reinhard Zumkeller, Mar 23 2005
a(n) = A020639(A016767(n)) for n>0. - Reinhard Zumkeller, Jan 29 2009
From Jaume Oliver Lafont, Mar 20 2009: (Start)
G.f.:(2+3*x)/(1-x^2).
Linear recurrence: a(0)=2, a(1)=3, a(n)=a(n-2) for n>=2. (End)
a(n) = A001615(2n)/A001615(n) for n > 0. - Enrique Pérez Herrero, Jun 06 2012
a(n) = floor((n+1)*5/2) - floor((n)*5/2). - Hailey R. Olafson, Jul 23 2014
a(n) = 3 - ((n+1) mod 2). - Wesley Ivan Hurt, Jul 24 2014
MAPLE
A010693:=n->2+(n mod 2): seq(A010693(n), n=0..100); # Wesley Ivan Hurt, Jul 24 2014
MATHEMATICA
Table[5/2 - (-1)^n/2, {n, 0, 100}] or a = {}; Do[b = First[First[FactorInteger[n!! ]]]; AppendTo[a, b], {n, 2, 1000}]; a (* Artur Jasinski, Apr 21 2008 *)
2 + Mod[Range[0, 100], 2] (* Wesley Ivan Hurt, Jul 24 2014 *)
PadRight[{}, 120, {2, 3}] (* Harvey P. Dale, Jan 20 2023 *)
PROG
(Haskell)
a010693 = (+ 2) . (`mod` 2) -- Reinhard Zumkeller, Nov 27 2012
a010693_list = cycle [2, 3] -- Reinhard Zumkeller, Mar 29 2012
(Magma) [2 + (n mod 2) : n in [0..100]]; // Wesley Ivan Hurt, Jul 24 2014
(PARI) a(n)=3 - (n+1)%2 \\ Charles R Greathouse IV, May 09 2016
CROSSREFS
Cf. A139421.
Cf. A026549 (partial products).
Sequence in context: A165587 A368405 A356464 * A158478 A139713 A171465
KEYWORD
nonn,easy
EXTENSIONS
Definition rewritten by Bruno Berselli, Sep 30 2011
STATUS
approved