login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010693 Periodic sequence: Repeat 2,3. 21
2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) = smallest prime divisor of n!! for n >= 2. For biggest prime divisor of n!! see A139421. - Artur Jasinski, Apr 21 2008

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=-charpoly(A,-2). - Milan Janjic, Jan 27 2010

Simple continued fraction of 1+sqrt(5/3) = A176020. - R. J. Mathar, Mar 08 2012

p(n) = a(n-1) is the Abelian complexity function of the Thue-Morse word A010060. - Nathan Fox, Mar 12 2013

LINKS

Table of n, a(n) for n=0..101.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 466

G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, J. London Math. Soc. 83(1) (2011) 79-95.

G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, arXiv:0911.2914 [math.CO], 2009.

FORMULA

a(n) = 5/2 - ((-1)^n)/2.

a(n) = 2 + (n mod 2) = A007395(n) + A000035(n). - Reinhard Zumkeller, Mar 23 2005

a(n) = A020639(A016767(n)) for n>0. - Reinhard Zumkeller, Jan 29 2009

From Jaume Oliver Lafont, Mar 20 2009: (Start)

G.f.:(2+3*x)/(1-x^2).

Linear recurrence: a(0)=2, a(1)=3, a(n)=a(n-2) for n>=2. (End)

a(n) = A001615(2n)/A001615(n) for n > 0. - Enrique Pérez Herrero, Jun 06 2012

a(n) = floor((n+1)*5/2) - floor((n)*5/2). - Hailey R. Olafson, Jul 23 2014

a(n) = 3 - ((n+1) mod 2). - Wesley Ivan Hurt, Jul 24 2014

MAPLE

A010693:=n->2+(n mod 2): seq(A010693(n), n=0..100); # Wesley Ivan Hurt, Jul 24 2014

MATHEMATICA

Table[5/2 - (-1)^n/2, {n, 0, 100}] or a = {}; Do[b = First[First[FactorInteger[n!! ]]]; AppendTo[a, b], {n, 2, 1000}]; a (* Artur Jasinski, Apr 21 2008 *)

2 + Mod[Range[0, 100], 2] (* Wesley Ivan Hurt, Jul 24 2014 *)

PROG

(Haskell)

a010693 = (+ 2) . (`mod` 2)  -- Reinhard Zumkeller, Nov 27 2012

a010693_list = cycle [2, 3]  -- Reinhard Zumkeller, Mar 29 2012

(MAGMA) [2 + (n mod 2) : n in [0..100]]; // Wesley Ivan Hurt, Jul 24 2014

(PARI) a(n)=3 - (n+1)%2 \\ Charles R Greathouse IV, May 09 2016

CROSSREFS

Cf. A139421.

Cf. A026549 (partial products).

Sequence in context: A274821 A275720 A165587 * A158478 A139713 A171465

Adjacent sequences:  A010690 A010691 A010692 * A010694 A010695 A010696

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Definition rewritten by Bruno Berselli, Sep 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 21:33 EST 2018. Contains 299628 sequences. (Running on oeis4.)