login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368405
Infinitary version of Mertens's function: a(n) = Sum_{k=1..n} A064179(k).
2
1, 0, -1, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -1, -2, -3, -2, -3, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -3, -2, -1, 0, 1, 2, 1, 2, 3, 2, 1, 0, -1, 0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5
OFFSET
1,4
LINKS
Rasa Steuding, Jörn Steuding, and László Tóth, A modified Möbius mu-function, Rendiconti del Circolo Matematico di Palermo, Vol. 60 (2011), pp. 13-21; arXiv preprint, arXiv:1109.4242 [math.NT], 2011.
MATHEMATICA
f[p_, e_] := (-1)^DigitCount[e, 2, 1]; imu[1] = 1; imu[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[imu, 100]]
PROG
(PARI) imu(n) = vecprod(apply(x -> (-1)^hammingweight(x), factor(n)[, 2]));
lista(nmax) = {my(s = 0); for(k = 1, nmax, s+ = imu(k); print1(s, ", ")); }
CROSSREFS
Partial sums of A064179.
Similar sequences: A002321, A174863 (unitary), A209802 (exponential).
Sequence in context: A307200 A339092 A165587 * A356464 A010693 A158478
KEYWORD
sign,easy
AUTHOR
Amiram Eldar, Dec 23 2023
STATUS
approved