login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010694 Period 2: repeat (2,4). 8
2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Simple continued fraction expansion of 1+sqrt(3/2) = A176051. - R. J. Mathar, Mar 08 2012

Number of linear characters of dihedral group of order 2(n+1). - Eric M. Schmidt, Feb 12 2013

a(n) is the n-th increment between two consecutive elements of the wheel in the wheel factorization with the basis {2,3}. See A038179. - Wojciech Raszka, May 10 2019

LINKS

Table of n, a(n) for n=0..80.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1073

Index entries for linear recurrences with constant coefficients, signature (0,1).

FORMULA

a(n) = (-1)^(n+1)+3 = 4*(n mod 2) + 2*((n+1) mod 2). - Paolo P. Lava, Oct 20 2006

From R. J. Mathar, Aug 28 2008: (Start)

a(n) = 2*A000034(n).

G.f.: 2(1+2x)/((1-x)(1+x)). (End)

a(n) = a(n-2) for n >= 2. - Jaume Oliver Lafont, Mar 20 2009

a(n) = 2^(n+1) mod 6. - Roderick MacPhee, Mar 31 2011

PROG

(PARI) a(n)=2*(1+n%2) \\ Jaume Oliver Lafont, Mar 20 2009

CROSSREFS

Cf. A000034, A038179, A176051.

Sequence in context: A253581 A165464 A158137 * A111737 A056672 A037201

Adjacent sequences:  A010691 A010692 A010693 * A010695 A010696 A010697

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 20:23 EDT 2019. Contains 328103 sequences. (Running on oeis4.)