The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091914 a(n) = 2*a(n-1) + 12*a(n-2). 18

%I

%S 1,2,16,56,304,1280,6208,27776,130048,593408,2747392,12615680,

%T 58200064,267788288,1233977344,5681414144,26170556416,120518082560,

%U 555082842112,2556382674944,11773759455232,54224111009792,249733335482368

%N a(n) = 2*a(n-1) + 12*a(n-2).

%C Binomial transform of 1, 1, 13, 13, 169, 169, ....

%C The inverse binomial transform of 2^n*c(n), where c(n) is the solution to c(n) = c(n-1) + k*c(n-2), a(0)=1, a(1)=1 is 1, 1, 4k+1, 4k+1, (4k+1)^2, ...

%H G. C. Greubel, <a href="/A091914/b091914.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,12).

%F a(n) = A000079(n)*A006130(n).

%F G.f.: 1/(1-2*x-12*x^2).

%F a(n) = ((1+sqrt(13))*(1+sqrt(13))^n - (1-sqrt(13))*(1-sqrt(13))^n) /(2*sqrt(13)).

%F a(n) = Sum_{k=0..floor(n/2)} C(n+1,2*k+1) * 13^k. - _Paul Barry_, Jan 15 2007

%p a := proc(n) option remember: if n=0 then 1 elif n=1 then 2 elif n>=2 then 2*procname(n-1) + 12*procname(n-2) fi; end: # _Muniru A Asiru_, Jan 31 2018

%t LinearRecurrence[{2,12},{1,2},30] (* or *) With[{s=Sqrt[13]},Table[ Simplify[ -(((13+s)((1-s)^n-(1+s)^n))/(26(1+s)))],{n,30}]] (* _Harvey P. Dale_, May 25 2013 *)

%o (Sage) [lucas_number1(n,2,-12) for n in range(1, 30)] # _Zerinvary Lajos_, Apr 22 2009

%o (PARI) my(x='x+O('x^30)); Vec(1/(1-2*x-12*x^2)) \\ _G. C. Greubel_, Jan 30 2018

%o (MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/(1-2*x-12*x^2))) // _G. C. Greubel_, Jan 30 2018

%o (GAP) a := [1,2];; for n in [3..30] do a[n] := 2*a[n-1] + 12*a[n-2]; od; a; # _Muniru A Asiru_, Jan 31 2018

%Y Cf. A003683, A063727.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Feb 12 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 06:19 EST 2020. Contains 338678 sequences. (Running on oeis4.)