login
A319910
Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n, such that m can be obtained by iteratively adding or multiplying together parts of y until only one part (equal to m) remains.
16
1, 3, 6, 11, 23, 48, 85, 178, 331, 619, 1176, 2183, 3876, 7013, 12447, 21719, 37628, 64570, 109723, 185055
OFFSET
1,2
EXAMPLE
The a(4) = 11 pairs:
4 <= (4)
3 <= (3,1)
4 <= (3,1)
4 <= (2,2)
2 <= (2,1,1)
3 <= (2,1,1)
4 <= (2,1,1)
1 <= (1,1,1,1)
2 <= (1,1,1,1)
3 <= (1,1,1,1)
4 <= (1,1,1,1)
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
nexos[ptn_]:=If[Length[ptn]==0, {0}, Union@@Select[ReplaceListRepeated[{Sort[ptn]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]];
Table[Total[Length/@nexos/@IntegerPartitions[n]], {n, 20}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 01 2018
STATUS
approved