login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319907
Number of distinct integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with the integer partition with Heinz number n.
0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 1, 2, 4, 1, 4, 1, 2, 4, 1, 1, 4, 2, 3, 2, 2, 1, 5, 2, 4, 2, 1, 1, 5, 1, 1, 4, 4, 2, 4, 1, 2, 2, 4, 1, 5, 1, 1, 6, 2, 2, 4, 1, 5, 4, 1, 1, 7, 2, 1, 2
OFFSET
1,15
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The Heinz number of (3,3,2) is 75 and we have
3+3+2 = 8,
3+3*2 = 9,
3*3+2 = 11,
(3+3)*2 = 12,
3*(3+2) = 15,
3*3*2 = 18,
so a(75) = 6.
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
mexos[ptn_]:=If[Length[ptn]==0, {0}, Union@@Select[ReplaceListRepeated[{Sort[ptn]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_?(#>1&), mie___, y_?(#>1&), afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]];
Table[Length[mexos[If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 01 2018
STATUS
approved