OFFSET
1,15
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The Heinz number of (3,3,2) is 75 and we have
3+3+2 = 8,
3+3*2 = 9,
3*3+2 = 11,
(3+3)*2 = 12,
3*(3+2) = 15,
3*3*2 = 18,
so a(75) = 6.
MATHEMATICA
ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];
mexos[ptn_]:=If[Length[ptn]==0, {0}, Union@@Select[ReplaceListRepeated[{Sort[ptn]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_?(#>1&), mie___, y_?(#>1&), afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]];
Table[Length[mexos[If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 01 2018
STATUS
approved