login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319856 Maximum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains. 4
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 4, 7, 6, 8, 6, 8, 6, 9, 6, 9, 7, 8, 8, 10, 9, 11, 6, 10, 8, 12, 9, 12, 9, 12, 9, 13, 12, 14, 10, 12, 10, 15, 9, 16, 12, 14, 12, 16, 12, 15, 12, 16, 11, 17, 12, 18, 12, 16, 9, 18, 15, 19, 14, 18, 16, 20, 12, 21, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

LINKS

Table of n, a(n) for n=1..74.

EXAMPLE

a(30) = 9 because the maximum number that can be obtained starting with (3,2,1) is 3*(2+1) = 9.

MATHEMATICA

ReplaceListRepeated[forms_, rerules_]:=Union[Flatten[FixedPointList[Function[pre, Union[Flatten[ReplaceList[#, rerules]&/@pre, 1]]], forms], 1]];

nexos[ptn_]:=If[Length[ptn]==0, {0}, Union@@Select[ReplaceListRepeated[{Sort[ptn]}, {{foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x+y]], {foe___, x_, mie___, y_, afe___}:>Sort[Append[{foe, mie, afe}, x*y]]}], Length[#]==1&]];

Table[Max[nexos[If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], {n, 100}]

CROSSREFS

Cf. A000792, A001970, A048249, A056239, A066739, A066815, A070960, A201163, A319850, A318948, A318949, A319841, A319855.

Sequence in context: A302039 A056239 A161511 * A100197 A057022 A287896

Adjacent sequences:  A319853 A319854 A319855 * A319857 A319858 A319859

KEYWORD

nonn

AUTHOR

Gus Wiseman, Sep 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 13:05 EDT 2021. Contains 346290 sequences. (Running on oeis4.)