login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161511 Number of 1...0 pairs in the binary representation of 2n. 23
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 4, 5, 5, 6, 5, 7, 6, 7, 5, 8, 7, 8, 6, 9, 7, 8, 5, 6, 6, 7, 6, 8, 7, 8, 6, 9, 8, 9, 7, 10, 8, 9, 6, 10, 9, 10, 8, 11, 9, 10, 7, 12, 10, 11, 8, 12, 9, 10, 6, 7, 7, 8, 7, 9, 8, 9, 7, 10, 9, 10, 8, 11, 9, 10, 7, 11, 10, 11, 9, 12, 10, 11, 8, 13, 11, 12, 9, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Row (partition) sums of A125106.
a(n) is also the weight (= sum of parts) of the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 24 2017
LINKS
FORMULA
a(0) = 0; a(2n) = a(n) + A000120(n); a(2n+1) = a(n) + 1.
From Antti Karttunen, Jun 28 2014: (Start)
Can be also obtained by mapping with an appropriate permutation from the lists of partition sizes computed for other enumerations similar to A125106:
a(n) = A227183(A006068(n)).
a(n) = A056239(A005940(n+1)).
a(n) = A243503(A163511(n)).
(End)
a(n) = A029931(n) - binomial(A000120(n),2). - Gus Wiseman, Jan 03 2023
EXAMPLE
For n = 5, the binary representation of 2n is 1010; the 1...0 pairs are 10xx, 1xx0, and xx10, so a(5) = 3.
MATHEMATICA
a[0] = 0; a[n_] := If[EvenQ[n], a[n/2] + DigitCount[n/2, 2, 1], a[(n-1)/2] + 1]; Array[a, 93, 0] (* Jean-François Alcover, Sep 09 2017 *)
PROG
(PARI) a(n)=local(t, k); t=0; k=1; while(n>0, if(n%2==0, k++, t+=k); n\=2); t
(Scheme, two variants, the recursive one requiring memoizing definec-macro from Antti Karttunen's IntSeq-library)
(define (A161511 n) (let loop ((n n) (i 1) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (+ i 1) s)) (else (loop (/ (- n 1) 2) i (+ s i))))))
(definec (A161511 n) (cond ((zero? n) n) ((even? n) (+ (A000120 n) (A161511 (/ n 2)))) (else (+ 1 (A161511 (/ (- n 1) 2))))))
;; Antti Karttunen, Jun 28 2014
(Python)
def A161511(n):
a, b = 0, 0
for i, j in enumerate(bin(n)[:1:-1], 1):
if int(j):
a += i-b
b += 1
return a # Chai Wah Wu, Jul 26 2023
CROSSREFS
Cf. A000120, A243499 (gives the corresponding products), A227183, A056239, A243503, A006068, A163511.
Sum of prime indices of A005940.
Row sums of A125106.
A reverse version is A359043, row sums of A242628.
A029837 adds up standard compositions, row sums of A066099.
A029931 adds up binary indices, row sums of A048793.
Sequence in context: A308220 A302039 A056239 * A319856 A100197 A368314
KEYWORD
nonn,look
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 00:46 EST 2024. Contains 370499 sequences. (Running on oeis4.)