login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302039
Analog of A056239 for nonstandard factorization based on the sieve of Eratosthenes (A083221).
8
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 5, 4, 7, 5, 8, 5, 6, 6, 9, 5, 6, 7, 6, 6, 10, 6, 11, 5, 7, 8, 7, 6, 12, 9, 7, 6, 13, 7, 14, 7, 8, 10, 15, 6, 8, 7, 8, 8, 16, 7, 9, 7, 8, 11, 17, 7, 18, 12, 8, 6, 8, 8, 19, 9, 9, 8, 20, 7, 21, 13, 9, 10, 9, 8, 22, 7, 9, 14, 23, 8, 10, 15, 9, 8, 24, 9, 12, 11, 10, 16, 9, 7, 25, 9, 10, 8, 26, 9, 27, 9, 10
OFFSET
1,3
COMMENTS
Each n occurs A000041(n) times in total.
FORMULA
a(1) = 0; for n > 1, a(n) = A055396(n) + a(A302042(n)).
a(1) = 0; for n > 1, a(n) = (A055396(n)*A302045(n)) + a(A302044(n)).
a(n) = A056239(A250246(n)).
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639, by Hasler.
A055396(n) = if(1==n, 0, primepi(A020639(n)));
v078898 = ordinal_transform(vector(up_to, n, A020639(n)));
A078898(n) = v078898[n];
A302042(n) = if((1==n)||isprime(n), 1, my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p), d -= 1)); (k*p));
A302039(n) = if(1==n, 0, A055396(n) + A302039(A302042(n)));
CROSSREFS
Cf. also A253557, A302041, A302050, A302051, A302052, A302055 for other similar analogs.
Sequence in context: A226164 A366604 A308220 * A056239 A161511 A319856
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 31 2018
STATUS
approved