login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346050
G.f. A(x) satisfies: A(x) = x + x^2 + x^3 * A(x/(1 - x)) / (1 - x).
3
0, 1, 1, 0, 1, 3, 6, 11, 23, 60, 179, 553, 1716, 5415, 17801, 61956, 228391, 882309, 3530322, 14531621, 61454091, 267479778, 1200680113, 5561767211, 26553471186, 130366882251, 656668581417, 3387887246292, 17886582294921, 96603394562849, 533645344137390, 3014295344076655
OFFSET
0,6
LINKS
FORMULA
a(0) = 0, a(1) = a(2) = 1; a(n) = Sum_{k=0..n-3} binomial(n-3,k) * a(k).
MATHEMATICA
nmax = 31; A[_] = 0; Do[A[x_] = x + x^2 + x^3 A[x/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 0; a[1] = a[2] = 1; a[n_] := a[n] = Sum[Binomial[n - 3, k] a[k], {k, 0, n - 3}]; Table[a[n], {n, 0, 31}]
PROG
(SageMath)
@CachedFunction
def a(n): # a = A346050
if (n<3): return (0, 1, 1)[n]
else: return sum(binomial(n-3, k)*a(k) for k in range(n-2))
[a(n) for n in range(51)] # G. C. Greubel, Nov 28 2022
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 02 2021
STATUS
approved