login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346047
a(0) = a(1) = a(2) = 1; a(n) = Sum_{k=1..n-3} a(k) * a(n-k-3).
3
1, 1, 1, 0, 1, 2, 2, 2, 4, 8, 10, 13, 24, 42, 61, 90, 156, 265, 410, 646, 1093, 1834, 2948, 4789, 8050, 13475, 22129, 36570, 61435, 103039, 171384, 286156, 481691, 810502, 1359194, 2284789, 3856974, 6512001, 10982193, 18550116, 31406597, 53194727, 90082902
OFFSET
0,6
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 * A(x) * (A(x) - 1).
a(n) ~ sqrt((3 - 3*r^3 - 4*r^4 - 2*r^5)/(8*Pi)) / (n^(3/2) * r^(n+3)), where r = 0.5701490701528437821032230160646366013461622472504286581627... is the root of the equation 1 - 2*r^3 - 4*r^4 - 4*r^5 + r^6 = 0. - Vaclav Kotesovec, Jul 03 2021
MATHEMATICA
a[0] = a[1] = a[2] = 1; a[n_] := a[n] = Sum[a[k] a[n - k - 3], {k, 1, n - 3}]; Table[a[n], {n, 0, 42}]
nmax = 42; A[_] = 0; Do[A[x_] = 1 + x + x^2 + x^3 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 02 2021
STATUS
approved