login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077993
Expansion of 1/(1+2*x+2*x^2+2*x^3).
3
1, -2, 2, -2, 4, -8, 12, -16, 24, -40, 64, -96, 144, -224, 352, -544, 832, -1280, 1984, -3072, 4736, -7296, 11264, -17408, 26880, -41472, 64000, -98816, 152576, -235520, 363520, -561152, 866304, -1337344, 2064384, -3186688, 4919296, -7593984, 11722752, -18096128, 27934720, -43122688
OFFSET
0,2
FORMULA
a(n) = (-1)^n * A077943(n). - R. J. Mathar, Aug 04 2008
MATHEMATICA
LinearRecurrence[{-2, -2, -2}, {1, -2, 2}, 50] (* or *) CoefficientList[ Series[1/(1+2*x+2*x^2+2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 27 2019 *)
PROG
(PARI) my(x='x+O('x^50)); Vec(1/(1+2*x+2*x^2+2*x^3)) \\ G. C. Greubel, Jun 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+2*x+2*x^2+2*x^3) )); // G. C. Greubel, Jun 27 2019
(Sage) (1/(1+2*x+2*x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
(GAP) a:=[1, -2, 2];; for n in [4..50] do a[n]:=-2*(a[n-1]+a[n-2]+a[n-3]); od; a; # G. C. Greubel, Jun 27 2019
CROSSREFS
Cf. A077943.
Sequence in context: A326022 A346047 A077943 * A302613 A295680 A099768
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved