login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319636
a(n) = Sum_{k=1..n} binomial(2*n - 3*k + 1, n - k)*k/(n - k + 1).
0
0, 1, 3, 6, 11, 23, 60, 182, 589, 1960, 6641, 22849, 79676, 281048, 1001100, 3595865, 13009663, 47366234, 173415160, 638044198, 2357941155, 8748646416, 32576869239, 121701491725, 456012458960, 1713339737046, 6453584646774, 24364925259967, 92185136438926, 349479503542513
OFFSET
0,3
FORMULA
G.f.: (1 - sqrt(1 - 4*x))/(sqrt(1 - 4*x)*(x^2 - x) + x^2 - 3*x + 2).
a(n) ~ 2^(2*n + 4) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 26 2018
D-finite with recurrence: n*a(n) - (5*n - 6)*a(n-1) + 2*(2*n - 3)*a(n-2) + n*a(n-3) - 2*(2*n - 3)*a(n-4) + 3*(n - 2) = 0 for n > 3. - Bruno Berselli, Sep 26 2018
MAPLE
a:=n->add(binomial(2*n-3*k+1, n-k)*k/(n-k+1), k=1..n): seq(a(n), n=0..30); # Muniru A Asiru, Sep 25 2018
MATHEMATICA
a[n_] := Sum[Binomial[2 n-3 k + 1, n - k] k/(n - k + 1), {k, 1, n}]; Array[a, 50] (* or *) CoefficientList[Series[(1 - Sqrt[1 - 4 x])/(Sqrt[1 - 4 x] (x^2 - x) + x^2 - 3 x + 2), {x, 0, 50}], x] (* Stefano Spezia, Sep 25 2018 *)
RecurrenceTable[{n a[n] - (5 n - 6) a[n - 1] + 2 (2 n - 3) a[n - 2] + n a[n - 3] - 2 (2 n - 3) a[n - 4] + 3 (n - 2) == 0, a[0] == 0, a[1] == 1, a[2] == 3, a[3] == 6}, a, {n, 0, 30}] (* Bruno Berselli, Sep 26 2018 *)
PROG
(Maxima) a(n):=sum(binomial(2*n-3*k+1, n-k)*k/(n-k+1), k, 1, n);
(PARI) x='x+O('x^40); concat(0, Vec((1-sqrt(1-4*x))/(sqrt(1-4*x)*(x^2-x)+x^2-3*x+2))) \\ Altug Alkan, Sep 25 2018
(GAP) List([0..30], n-> Sum([1..n], k-> Binomial(2*n-3*k+1, n-k)*k/(n-k+1))); # Muniru A Asiru, Sep 25 2018
CROSSREFS
Sequence in context: A319910 A369848 A346050 * A001867 A369691 A000998
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Sep 25 2018
STATUS
approved