Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Jan 30 2020 21:29:18
%S 0,1,3,6,11,23,60,182,589,1960,6641,22849,79676,281048,1001100,
%T 3595865,13009663,47366234,173415160,638044198,2357941155,8748646416,
%U 32576869239,121701491725,456012458960,1713339737046,6453584646774,24364925259967,92185136438926,349479503542513
%N a(n) = Sum_{k=1..n} binomial(2*n - 3*k + 1, n - k)*k/(n - k + 1).
%F G.f.: (1 - sqrt(1 - 4*x))/(sqrt(1 - 4*x)*(x^2 - x) + x^2 - 3*x + 2).
%F a(n) ~ 2^(2*n + 4) / (49 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Sep 26 2018
%F D-finite with recurrence: n*a(n) - (5*n - 6)*a(n-1) + 2*(2*n - 3)*a(n-2) + n*a(n-3) - 2*(2*n - 3)*a(n-4) + 3*(n - 2) = 0 for n > 3. - _Bruno Berselli_, Sep 26 2018
%p a:=n->add(binomial(2*n-3*k+1,n-k)*k/(n-k+1),k=1..n): seq(a(n),n=0..30); # _Muniru A Asiru_, Sep 25 2018
%t a[n_] := Sum[Binomial[2 n-3 k + 1, n - k] k/(n - k + 1), {k, 1, n}]; Array[a, 50] (* or *) CoefficientList[Series[(1 - Sqrt[1 - 4 x])/(Sqrt[1 - 4 x] (x^2 - x) + x^2 - 3 x + 2), {x, 0, 50}], x] (* _Stefano Spezia_, Sep 25 2018 *)
%t RecurrenceTable[{n a[n] - (5 n - 6) a[n - 1] + 2 (2 n - 3) a[n - 2] + n a[n - 3] - 2 (2 n - 3) a[n - 4] + 3 (n - 2) == 0, a[0] == 0, a[1] == 1, a[2] == 3, a[3] == 6}, a, {n, 0, 30}] (* _Bruno Berselli_, Sep 26 2018 *)
%o (Maxima) a(n):=sum(binomial(2*n-3*k+1,n-k)*k/(n-k+1),k,1,n);
%o (PARI) x='x+O('x^40); concat(0, Vec((1-sqrt(1-4*x))/(sqrt(1-4*x)*(x^2-x)+x^2-3*x+2))) \\ _Altug Alkan_, Sep 25 2018
%o (GAP) List([0..30], n-> Sum([1..n], k-> Binomial(2*n-3*k+1,n-k)*k/(n-k+1))); # _Muniru A Asiru_, Sep 25 2018
%Y Cf. A000108, A030238.
%K nonn
%O 0,3
%A _Vladimir Kruchinin_, Sep 25 2018