login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346051
G.f. A(x) satisfies: A(x) = 1 + x^2 + x^3 * A(x/(1 - x)) / (1 - x).
3
1, 0, 1, 1, 1, 2, 5, 12, 28, 68, 181, 531, 1671, 5491, 18627, 65299, 237880, 903907, 3580619, 14729777, 62639952, 274442521, 1236730244, 5729809348, 27292248240, 133614280479, 671803041553, 3464970976743, 18309428363425, 99010800275743, 547462187824465, 3093329527120022
OFFSET
0,6
LINKS
FORMULA
a(0) = 1, a(1) = 0, a(2) = 1; a(n) = Sum_{k=0..n-3} binomial(n-3,k) * a(k).
MATHEMATICA
nmax = 31; A[_] = 0; Do[A[x_] = 1 + x^2 + x^3 A[x/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[1] = 0; a[2] = 1; a[n_] := a[n] = Sum[Binomial[n - 3, k] a[k], {k, 0, n - 3}]; Table[a[n], {n, 0, 31}]
PROG
(Magma)
function a(n)
if n lt 3 then return (1+(-1)^n)/2;
else return (&+[Binomial(n-3, j)*a(j): j in [0..n-3]]);
end if; return a;
end function;
[a(n): n in [0..35]]; // G. C. Greubel, Nov 30 2022
(SageMath)
@CachedFunction
def a(n): # a = A346051
if (n<3): return (1, 0, 1)[n]
else: return sum(binomial(n-3, k)*a(k) for k in range(n-2))
[a(n) for n in range(51)] # G. C. Greubel, Nov 30 2022
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 02 2021
STATUS
approved