login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346054
Number of ways to tile a 3 X n strip with dominoes and L-shaped 5-minoes.
2
1, 0, 3, 8, 13, 52, 119, 308, 873, 2184, 5867, 15552, 40581, 107836, 283871, 748076, 1976545, 5208784, 13743315, 36260088, 95627773, 252289476, 665499975, 1755466916, 4630903129, 12215645848, 32223689915, 85003275440, 224228961909, 591494654412, 1560303157679
OFFSET
0,3
LINKS
Greg Dresden and Michael Tulskikh, Tilings of 2 X n boards with dominos and L-shaped trominos, Journal of Integer Sequences 24 (2021), article 21.4.5.
FORMULA
a(n) = a(n-1) + 3*a(n-2) + 5*a(n-3) - 4*a(n-4).
G.f.: (1 - x)/(1 - x - 3*x^2 - 5*x^3 + 4*x^4).
EXAMPLE
Here are two such tilings for a 3 X 3 strip; each has four rotations thus demonstrating that a(3)=8.
._____. ._____.
| | | | | |___|
| |_|_| | |___|
|_____| |_____|
For a 3 X 4 strip, here are three of the possible a(4)=13 tilings.
._______. ._______. ._______.
| |___ | | ___| | |___|___|
| |___| | | |___| | | |___| |
|_____|_| |_|_____| |_|___|_|
For a 3 X 5 strip, here are three of the possible a(5)=52 tilings.
._________. ._________. ._________.
| | |___| | | ___|___| | |___|___|
| |_|___|_| | | |___| | | |___|___|
|_____|___| |_|_|___|_| |_____|___|
MATHEMATICA
LinearRecurrence[{1, 3, 5, -4}, {1, 0, 3, 8}, 50];
PROG
(Magma) I:=[1, 0, 3, 8]; [n le 4 select I[n] else Self(n-1) +3*Self(n-2) +5*Self(n-3) -4*Self(n-4): n in [1..50]]; // G. C. Greubel, Dec 01 2022
(SageMath)
@CachedFunction
def a(n): # a = A346054
if (n<4): return (1, 0, 3, 8)[n]
else: return a(n-1) + 3*a(n-2) + 5*a(n-3) - 4*a(n-4)
[a(n) for n in range(51)] # G. C. Greubel, Dec 01 2022
CROSSREFS
Cf. A052980.
Sequence in context: A355240 A355514 A281267 * A153891 A056402 A366071
KEYWORD
nonn,easy
AUTHOR
Greg Dresden and Ziyao Geng, Jul 02 2021
EXTENSIONS
Corrected by Greg Dresden, Sep 04 2021
STATUS
approved