login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052980
Expansion of (1 - x)/(1 - 2*x - x^3).
23
1, 1, 2, 5, 11, 24, 53, 117, 258, 569, 1255, 2768, 6105, 13465, 29698, 65501, 144467, 318632, 702765, 1549997, 3418626, 7540017, 16630031, 36678688, 80897393, 178424817, 393528322, 867954037, 1914332891, 4222194104, 9312342245, 20539017381, 45300228866
OFFSET
0,3
COMMENTS
a(n) counts permutations of length n which embed into the (infinite) increasing oscillating sequence given by 4,1,6,3,8,5,...,2k+2,2k-1,...; these are also the permutations which avoid {321, 2341, 3412, 4123}. - Vincent Vatter, May 23 2008
a(n) is the top left entry of the n-th power of any of the 3X3 matrices [1, 1, 0; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 0, 1, 0] or [1, 1, 1; 0, 0, 1; 1, 0, 1] or [1, 0, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the number of possible tilings of a 2 X n board, using dominoes and L-shaped trominoes. - Michael Tulskikh, Aug 21 2019
a(n) = A190512(n-1) for n>0. - Greg Dresden, Feb 28 2020
REFERENCES
Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
LINKS
R. Brignall, N. Ruskuc and V. Vatter, Simple permutations: decidability and unavoidable substructures, Theoretical Computer Science 391 (2008), 150-163.
Greg Dresden and Michael Tulskikh, Tilings of 2 X n boards with dominos and L-shaped trominos, Washington & Lee University (2021).
D. Oudrar, Sur l'énumération de structures discrètes, une approche par la théorie des relations, Thesis (in French), arXiv:1604.05839 [math.CO], 2016.
D. Oudrar and M. Pouzet, Profile and hereditary classes of ordered relational structures, arXiv preprint arXiv:1409.1108 [math.CO], 2014 [The first version of this document erroneously gives the A-number as A005298]
V. Vatter, Small permutation classes, arXiv:0712.4006 [math.CO], 2007-2016.
FORMULA
Recurrence: a(0)=1, a(1)=1, a(2)=2; thereafter a(n) = 2*a(n-1)+a(n-3).
a(n) = Sum(1/59*(4+3*_alpha^2+17*_alpha)*_alpha^(-1-n), _alpha = RootOf(-1+2*_Z+_Z^3)).
a(n) = A008998(n) - A008998(n-1). - R. J. Mathar, Feb 04 2014
Let u1 = 2.20556943... denote the real root of x^3-2*x^2-1. There is an explicit constant c1 = 0.460719842... such that for n>0, a(n) = nearest integer to c1*u1^n. - N. J. A. Sloane, Nov 07 2016
a(2n) = a(n)^2 - a(n-1)^2 + (1/2)*(a(n+2) - a(n+1) - a(n))^2. - Greg Dresden and Michael Tulskikh, Aug 20 2019
a(n) = 2^(n-1) + Sum_{i=3..n}(2^(n-i)*a(i-3)). - Greg Dresden, Aug 27 2019
a(n+1) = (Sum_{i >= 0} 2^(n-3i-2)*(4*binomial(n-2i, i) + binomial(n-2i-2, i))). - Michael Tulskikh, Feb 14 2020
a(n) = A008998(n-1) + A008998(n-3). - Michael Tulskikh, Feb 14 2020
MAPLE
spec := [S, {S=Sequence(Prod(Union(Prod(Z, Z, Z), Z), Sequence(Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 2 x - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 05 2014 *)
PROG
(PARI) Vec((1-x)/(1-2*x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 20 2011
(Magma) I:=[1, 1, 2]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-3): n in [1..40]]
(Magma) R<x>:=PowerSeriesRing(Integers(), 32); Coefficients(R!( (1 - x)/(1 - 2*x - x^3))); // Marius A. Burtea, Feb 14 2020
CROSSREFS
See A110513 for another version.
Column k=2 of A219987.
Sequence in context: A350326 A111297 A077864 * A190512 A110513 A018115
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved