login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052977
Expansion of (1-x)(1+x)/(1 - x - x^2 - x^3 + x^5).
0
1, 1, 1, 3, 5, 8, 15, 27, 47, 84, 150, 266, 473, 842, 1497, 2662, 4735, 8421, 14976, 26635, 47370, 84246, 149830, 266470, 473911, 842841, 1498976, 2665898, 4741245, 8432208, 14996510, 26670987, 47433807, 84360059, 150032645, 266830001
OFFSET
0,4
COMMENTS
Equals INVERT transform of (1, 0, 2, 0, 1, 0, 1, ...). - Gary W. Adamson, Apr 28 2009
FORMULA
G.f.: -(-1+x^2)/(1 - x - x^2 - x^3 + x^5).
Recurrence: {a(1)=1, a(0)=1, a(2)=1, a(3)=3, a(4)=5, a(n) - a(n+2) - a(n+3) - a(n+4) + a(n+5) = 0}.
a(n) = Sum(-1/7031*(-798-714*_alpha^2-1887*_alpha+410*_alpha^4+986*_alpha^3)*_alpha^(-1-n), _alpha=RootOf(1-_Z^3-_Z-_Z^2+_Z^5)). [in Maple notation]
MAPLE
spec := [S, {S=Sequence(Prod(Union(Sequence(Prod(Z, Z)), Prod(Z, Z)), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x)(1+x)/(1-x-x^2-x^3+x^5), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 1, 1, 0, -1}, {1, 1, 1, 3, 5}, 40] (* Harvey P. Dale, Apr 26 2018 *)
CROSSREFS
Sequence in context: A290630 A359851 A193147 * A191633 A215327 A208723
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved