login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052978 Expansion of (1-2*x)/(1-4*x-2*x^2+4*x^3). 2
1, 2, 10, 40, 172, 728, 3096, 13152, 55888, 237472, 1009056, 4287616, 18218688, 77413760, 328941952, 1397720576, 5939111168, 25236118016, 107231812096, 455643039744, 1936091311104, 8226724075520, 34956506765312, 148535109967872, 631146557100032 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = element(1,3) in A^(n+1), where A is the 5 X 5 matrix:

[1, 1, 1, 1, 1]

[1, 1, 0, 1, 1]

[1, 0, 0, 0, 1]

[1, 1, 0, 1, 1]

[1, 1, 1, 1, 1]. - Lechoslaw Ratajczak, May 03 2017

Also the number of matchings in the 2 X n king graph for n >= 1. - Eric W. Weisstein, Oct 03 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1050

Eric Weisstein's World of Mathematics, Grid Graph

Eric Weisstein's World of Mathematics, Independent Edge Set

Eric Weisstein's World of Mathematics, Matching

Index entries for linear recurrences with constant coefficients, signature (4,2,-4).

FORMULA

G.f.: (1-2*x)/(1-4*x-2*x^2+4*x^3).

Recurrence: {a(0)=1, a(1)=2, a(2)=10, 4*a(n)-2*a(n+1)-4*a(n+2)+a(n+3)=0.}

a(n) = Sum(-1/158*(-11-42*r+24*r^2)*r^(-1-n) where r=RootOf(1-4*_Z-2*_Z^2+4*_Z^3))

MAPLE

spec := [S, {S=Sequence(Prod(Union(Sequence(Union(Z, Z)), Z), Union(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);

MATHEMATICA

LinearRecurrence[{4, 2, -4}, {1, 2, 10}, 40] (* Vincenzo Librandi, Jun 23 2012 *)

Table[RootSum[4 - 2 # - 4 #^2 + #^3 &, 30 #^n - 13 #^(n + 1) + 6 #^(n + 2) &]/158, {n, 0, 20}] (* Eric W. Weisstein, Oct 03 2017 *)

Table[RootSum[1 - 4 # - 2 #^2 + 4 #^3 &, (11 + 42 # - 24 #^2)/#^(n + 1) &]/158, {n, 0, 20}] (* Eric W. Weisstein, Oct 03 2017 *)

CoefficientList[Series[(1 - 2 x)/(1 - 4 x - 2 x^2 + 4 x^3), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)

PROG

(Magma) I:=[1, 2, 10]; [n le 3 select I[n] else 4*Self(n-1)+2*Self(n-2)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012

(PARI) Vec((1-2*x)/(1-4*x-2*x^2+4*x^3) + O(x^30)) \\ Michel Marcus, May 06 2017

CROSSREFS

Sequence in context: A193519 A268329 A223095 * A351511 A151023 A344501

Adjacent sequences: A052975 A052976 A052977 * A052979 A052980 A052981

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 12:40 EST 2022. Contains 358441 sequences. (Running on oeis4.)