login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052978
Expansion of (1-2*x)/(1-4*x-2*x^2+4*x^3).
2
1, 2, 10, 40, 172, 728, 3096, 13152, 55888, 237472, 1009056, 4287616, 18218688, 77413760, 328941952, 1397720576, 5939111168, 25236118016, 107231812096, 455643039744, 1936091311104, 8226724075520, 34956506765312, 148535109967872, 631146557100032
OFFSET
0,2
COMMENTS
a(n) = element(1,3) in A^(n+1), where A is the 5 X 5 matrix:
[1, 1, 1, 1, 1]
[1, 1, 0, 1, 1]
[1, 0, 0, 0, 1]
[1, 1, 0, 1, 1]
[1, 1, 1, 1, 1]. - Lechoslaw Ratajczak, May 03 2017
Also the number of matchings in the 2 X n king graph for n >= 1. - Eric W. Weisstein, Oct 03 2017
LINKS
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Independent Edge Set
Eric Weisstein's World of Mathematics, Matching
FORMULA
G.f.: (1-2*x)/(1-4*x-2*x^2+4*x^3).
Recurrence: {a(0)=1, a(1)=2, a(2)=10, 4*a(n)-2*a(n+1)-4*a(n+2)+a(n+3)=0.}
a(n) = Sum(-1/158*(-11-42*r+24*r^2)*r^(-1-n) where r=RootOf(1-4*_Z-2*_Z^2+4*_Z^3))
MAPLE
spec := [S, {S=Sequence(Prod(Union(Sequence(Union(Z, Z)), Z), Union(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
LinearRecurrence[{4, 2, -4}, {1, 2, 10}, 40] (* Vincenzo Librandi, Jun 23 2012 *)
Table[RootSum[4 - 2 # - 4 #^2 + #^3 &, 30 #^n - 13 #^(n + 1) + 6 #^(n + 2) &]/158, {n, 0, 20}] (* Eric W. Weisstein, Oct 03 2017 *)
Table[RootSum[1 - 4 # - 2 #^2 + 4 #^3 &, (11 + 42 # - 24 #^2)/#^(n + 1) &]/158, {n, 0, 20}] (* Eric W. Weisstein, Oct 03 2017 *)
CoefficientList[Series[(1 - 2 x)/(1 - 4 x - 2 x^2 + 4 x^3), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
PROG
(Magma) I:=[1, 2, 10]; [n le 3 select I[n] else 4*Self(n-1)+2*Self(n-2)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012
(PARI) Vec((1-2*x)/(1-4*x-2*x^2+4*x^3) + O(x^30)) \\ Michel Marcus, May 06 2017
CROSSREFS
Sequence in context: A374298 A268329 A223095 * A351511 A151023 A344501
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved