login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A344501 a(n) = Sum_{k=0..n} binomial(n, k)*HT(n, k) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*HT(n, k), where HT(n, k) is the Hermite triangle A099174. 2
1, 1, 2, 10, 40, 176, 916, 4852, 27350, 163270, 1009396, 6504356, 43400512, 298682320, 2118282440, 15433768456, 115345136566, 882900083222, 6910879999420, 55255039432300, 450744068706896, 3747796352076736, 31734090674951512, 273414453918459800, 2395202886317347900 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{j=0..n} even(n - j)*binomial(n, j)*2^((j - n)/2)*n!/(j!*((n - j)/2)!), where even(k) = 1 if k is even and otherwise 0.
From Vaclav Kotesovec, Apr 21 2024: (Start)
Recurrence: n*(9*n - 13)*a(n) = (3*n - 4)*(9*n - 5)*a(n-1) + (18*n^3 - 89*n^2 + 131*n - 56)*a(n-2) + (54*n^3 - 219*n^2 + 261*n - 92)*a(n-3) - (n-3)^2*(n-1)*(9*n - 4)*a(n-4).
a(n) ~ n^(n/2 - 3/8) / (2^(3/2) * sqrt(Pi) * exp(n/2 - 2*n^(3/4) + 3*sqrt(n)/4 - 5*n^(1/4)/16 + 1/8)) * (1 + 5351/(5120*n^(1/4))). (End)
MAPLE
a := proc(n) add((if n - j mod 2 = 0 then binomial(n, j)*2^((j - n)/2)*n!/(j!*((n - j)/2)!) else 0 fi), j = 0..n) end: seq(a(n), n = 0..24);
MATHEMATICA
Table[n! * Sum[Binomial[n, 2*j] / (2^j * (n - 2*j)! * j!), {j, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 21 2024 *)
CROSSREFS
Sequence in context: A052978 A351511 A151023 * A151024 A151025 A333799
KEYWORD
nonn
AUTHOR
Peter Luschny, May 22 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 08:03 EDT 2024. Contains 372346 sequences. (Running on oeis4.)