Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Sep 08 2022 08:45:00
%S 1,2,10,40,172,728,3096,13152,55888,237472,1009056,4287616,18218688,
%T 77413760,328941952,1397720576,5939111168,25236118016,107231812096,
%U 455643039744,1936091311104,8226724075520,34956506765312,148535109967872,631146557100032
%N Expansion of (1-2*x)/(1-4*x-2*x^2+4*x^3).
%C a(n) = element(1,3) in A^(n+1), where A is the 5 X 5 matrix:
%C [1, 1, 1, 1, 1]
%C [1, 1, 0, 1, 1]
%C [1, 0, 0, 0, 1]
%C [1, 1, 0, 1, 1]
%C [1, 1, 1, 1, 1]. - _Lechoslaw Ratajczak_, May 03 2017
%C Also the number of matchings in the 2 X n king graph for n >= 1. - _Eric W. Weisstein_, Oct 03 2017
%H Vincenzo Librandi, <a href="/A052978/b052978.txt">Table of n, a(n) for n = 0..1000</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1050">Encyclopedia of Combinatorial Structures 1050</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependentEdgeSet.html">Independent Edge Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching.html">Matching</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,2,-4).
%F G.f.: (1-2*x)/(1-4*x-2*x^2+4*x^3).
%F Recurrence: {a(0)=1, a(1)=2, a(2)=10, 4*a(n)-2*a(n+1)-4*a(n+2)+a(n+3)=0.}
%F a(n) = Sum(-1/158*(-11-42*r+24*r^2)*r^(-1-n) where r=RootOf(1-4*_Z-2*_Z^2+4*_Z^3))
%p spec := [S,{S=Sequence(Prod(Union(Sequence(Union(Z,Z)),Z),Union(Z,Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
%t LinearRecurrence[{4, 2, -4}, {1, 2, 10}, 40] (* _Vincenzo Librandi_, Jun 23 2012 *)
%t Table[RootSum[4 - 2 # - 4 #^2 + #^3 &, 30 #^n - 13 #^(n + 1) + 6 #^(n + 2) &]/158, {n, 0, 20}] (* _Eric W. Weisstein_, Oct 03 2017 *)
%t Table[RootSum[1 - 4 # - 2 #^2 + 4 #^3 &, (11 + 42 # - 24 #^2)/#^(n + 1) &]/158, {n, 0, 20}] (* _Eric W. Weisstein_, Oct 03 2017 *)
%t CoefficientList[Series[(1 - 2 x)/(1 - 4 x - 2 x^2 + 4 x^3), {x, 0, 20}], x] (* _Eric W. Weisstein_, Oct 03 2017 *)
%o (Magma) I:=[1, 2, 10]; [n le 3 select I[n] else 4*Self(n-1)+2*Self(n-2)-4*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Jun 23 2012
%o (PARI) Vec((1-2*x)/(1-4*x-2*x^2+4*x^3) + O(x^30)) \\ _Michel Marcus_, May 06 2017
%K easy,nonn
%O 0,2
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000