OFFSET
1,2
COMMENTS
Also by duality the number of achiral planar maps with n faces and 2 vertices.
The number of edges is n.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
PROG
(PARI)
G1(n)={my(g=(1-sqrt(1-4*x^2 + O(x*x^n)))/(2*x^2)); ((1 + x/(1-x-x^2*g)^2)^2/(1 - x^2*g^2) - 1)/2}
G2(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); sum(k=1, n, my(m=1+k%2); -log(1 - x^k*c(m*k)^(2/m))*eulerphi(k)/k, O(x*x^n))}
seq(n)={Vec(G1(n)+G2(n))/2}
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 19 2025
STATUS
approved