OFFSET
0,8
COMMENTS
The zeroth column is included by convention only for consistency with the first row sequences.
The case for regular planar maps of odd valency is more complicated and without simple closed form formulas, so not presented in this sequence. See the references for additional information.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
E. A. Bender and E. R. Canfield, The number of degree restricted rooted maps on the sphere, SIAM J. Discrete Math. 7 (1994) 9-15.
Zhicheng Gao and Mizan Rahman, Enumeration of k-poles, Annals of Combinatorics 1 (1997), pp. 55-66.
W. T. Tutte, A Census of Slicings, Canad. J. Math. 14 (1962), 708-722.
W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
FORMULA
T(n,k) = 2*binomial(2*k-1, k)^n*(n*k)!/(n!*(n*k - n + 2)!) for k > 0.
EXAMPLE
Array begins:
====================================================================
n\k | 0 1 2 3 4 5 ...
----+---------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 2 5 14 42 ...
2 | 1 1 9 100 1225 15876 ...
3 | 1 1 54 3000 171500 10001880 ...
4 | 1 1 378 110000 30012500 7981500240 ...
5 | 1 1 2916 4550000 5987493750 7304332956480 ...
6 | 1 1 24057 204000000 1302227368750 7310748066293952 ...
7 | 1 1 208494 9690000000 301107909375000 7794097754539041792 ...
...
PROG
(PARI) T(n, k)=if(k==0, 1, 2*binomial(2*k-1, k)^n*(n*k)!/(n!*(n*k - n + 2)!))
CROSSREFS
KEYWORD
AUTHOR
Andrew Howroyd, Jan 22 2025
STATUS
approved