OFFSET
0,9
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
FORMULA
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j).
EXAMPLE
Row n=0: 1, 1, 1, 1, 1, 1, 1, 1, ...
Row n=1: 1, 1, 1, 1, 1, 1, 1, 1, ...
Row n=2: 1, 2, 5, 10, 17, 26, 37, 50, ...
Row n=3: 1, 6, 29, 82, 177, 326, 541, 834, ...
Row n=4: 1, 24, 233, 1000, 2913, 6776, 13609, 24648, ...
MAPLE
T:= (n, k)-> `if`(n=0, 1, LinearAlgebra[Permanent](
Matrix(n, (i, j)-> `if`(i=j, 1, k)))):
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Jul 09 2017
# second Maple program:
b:= proc(n, k) b(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
(b(n-1, 0)+b(n-2, 0))), binomial(n, k)*b(n-k, 0))
end:
T:= proc(n, k) T(n, k):= add(b(n, j)*k^(n-j), j=0..n) end:
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Jul 09 2017
MATHEMATICA
T[0, _] = 1;
T[n_, k_] := Permanent[Table[If[i == j, 1, k], {i, n}, {j, n}]];
Table[T[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
PROG
(PARI) T(n, k) = matpermanent(matrix(n, n, i, j, if (i==j, 1, k)));
matrix(10, 10, n, k, T(n, k)) \\ Michel Marcus, Dec 07 2019
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Dec 13 2003
EXTENSIONS
3 terms corrected and more terms from Alois P. Heinz, Jul 09 2017
STATUS
approved