login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090628
Square array T(n,k) (row n, column k) read by antidiagonals defined by: T(n,k) is the permanent of the n X n matrix with 1 on the diagonal and k elsewhere; T(0,k)=1.
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 6, 1, 1, 1, 10, 29, 24, 1, 1, 1, 17, 82, 233, 120, 1, 1, 1, 26, 177, 1000, 2329, 720, 1, 1, 1, 37, 326, 2913, 14968, 27949, 5040, 1, 1, 1, 50, 541, 6776, 58017, 269488, 391285, 40320, 1, 1, 1, 65, 834, 13609, 168376, 1393137, 5659120, 6260561, 362880, 1
OFFSET
0,9
LINKS
FORMULA
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j).
EXAMPLE
Row n=0: 1, 1, 1, 1, 1, 1, 1, 1, ...
Row n=1: 1, 1, 1, 1, 1, 1, 1, 1, ...
Row n=2: 1, 2, 5, 10, 17, 26, 37, 50, ...
Row n=3: 1, 6, 29, 82, 177, 326, 541, 834, ...
Row n=4: 1, 24, 233, 1000, 2913, 6776, 13609, 24648, ...
MAPLE
T:= (n, k)-> `if`(n=0, 1, LinearAlgebra[Permanent](
Matrix(n, (i, j)-> `if`(i=j, 1, k)))):
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Jul 09 2017
# second Maple program:
b:= proc(n, k) b(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
(b(n-1, 0)+b(n-2, 0))), binomial(n, k)*b(n-k, 0))
end:
T:= proc(n, k) T(n, k):= add(b(n, j)*k^(n-j), j=0..n) end:
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Jul 09 2017
MATHEMATICA
T[0, _] = 1;
T[n_, k_] := Permanent[Table[If[i == j, 1, k], {i, n}, {j, n}]];
Table[T[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
PROG
(PARI) T(n, k) = matpermanent(matrix(n, n, i, j, if (i==j, 1, k)));
matrix(10, 10, n, k, T(n, k)) \\ Michel Marcus, Dec 07 2019
CROSSREFS
Cf. A008290.
Columns: A000012, A000142, A000354.
Sequence in context: A275377 A219585 A292464 * A054387 A199958 A112734
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Dec 13 2003
EXTENSIONS
3 terms corrected and more terms from Alois P. Heinz, Jul 09 2017
STATUS
approved