login
A380244
The Collatz (or 3x+1) trajectory starting at a(n) contains exactly n odd integers and a(n) is the n-th number with this property.
3
1, 10, 12, 68, 45, 30, 72, 101, 134, 179, 237, 314, 422, 551, 723, 509, 1282, 887, 1170, 1535, 2021, 1509, 1899, 2412, 1780, 2217, 3170, 3867, 2819, 3728, 2511, 3155, 3972, 2802, 3578, 2623, 3444, 4302, 3087, 3968, 2690, 1806, 2336, 1593, 2084, 2757, 1884, 2477
OFFSET
1,2
FORMULA
A078719(a(n)) = n.
EXAMPLE
a(2) = 10 is the second integer (after 5) having exactly two odd integers in the Collatz trajectory: 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1.
MAPLE
b:= proc(n) option remember; irem(n, 2, 'r')+
`if`(n=1, 0, b(`if`(n::odd, 3*n+1, r)))
end:
A:= proc() local h, p, q; p, q:= proc() [] end, 0;
proc(n, k)
if k=1 then return 2^(n-1) fi;
while nops(p(k))<n do q:= q+1;
h:= b(q);
p(h):= [p(h)[], q]
od; p(k)[n]
end
end():
a:= n-> A(n$2):
seq(a(n), n=1..48);
CROSSREFS
Main diagonal of A354236.
Sequence in context: A257039 A337076 A223150 * A333258 A370976 A241252
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 17 2025
STATUS
approved